
MATHEMATICS OF COMPUTATION 
VOLUME 63, NUMBER 207 
JULY 1994, PAGES 155-173 

WAVELET CALCULUS AND FINITE DIFFERENCE OPERATORS 

KENT McCORMICK AND RAYMOND 0. WELLS, JR. 

ABSTRACT. This paper shows that the naturally induced discrete differentiation 
operators induced from a wavelet-Galerkin finite-dimensional approximation to 
a standard function space approximates differentiation with an error of order 
O(h2d+2) , where d is the degree of the wavelet system. The degree of a wavelet 
system is defined as one less than the degree of the lowest-order nonvanishing 
moment of the fundamental wavelet. We consider in this paper compactly 
supported wavelets of the type introduced by Daubechies in 1988. The induced 
differentiation operators are described in terms of connection coefficients which 
are intrinsically defined functional invariants of the wavelet system (defined 
as L2 inner products of derivatives of wavelet basis functions with the basis 
functions themselves). These connection coefficients can be explicitly computed 
without quadrature and they themselves have key moment-vanishing properties 
proved in this paper which are dependent upon the degree of the wavelet system. 
This -is the basis for the proof of the principal results concerning the degree of 
approximation of the differentiation operator by the wavelet-Galerkin discrete 
differentiation operator. 

1. INTRODUCTION 

The recently discovered compactly supported wavelets of Daubechies [4] have 
proven to be a useful tool in the numerical solutions of partial differential equa- 
tions (see [7, 12, 17, 20, 19, 16] for recent numerical solutions of partial differ- 
ential equations using wavelet-Galerkin techniques. In each of the papers above 
the notion of connection coefficients has played a key role in the approximations 
of partial derivatives as well as nonlinear terms in the wavelet discretization of 
the differential equations. Connection coefficients and some of their properties 
and algorithms for computing them are described in [1 1] and [1]. 

The purpose of this paper is to show that there is a relationship between 
discrete differentiation using connection coefficients and discrete differentiation 
using finite difference operators. 

A certain class of finite difference operators have the property that operating 
on the discretization of a polynomial of degree d is equivalent to differentiating 
the polynomials and then discretizing. This implies that the finite difference 
operator approximates the derivative up to order d, and conversely. Let us 
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explain what this means. Consider a lattice 

A = {xo + ih}, i E Z, 

in R, for some fixed h e R. Let xi = xo + ih denote a generic point of A, 
and let C(A) denote the continuous ( = arbitrary) real-valued functions on A. 
Then a finite difference operator V is a mapping of the form 

(1.1) C(A) -v C(A): f(xi) -* g (xi) 

where 

(1.2) g(xi)=Vf(xi)= E 
- 
If(xi+kh) 

k=-N, 

and the wfr are the weights of the finite difference operator. For instance, there 
is a classical 5-point symmetric difference operator of the form 

V4(f)(xi) = 12h [f(xi - 2h) - 8f(xi - h) + 8f(xi + h) - f(xi + 2h)] 
(1.3) 12 

= 1 2h [f(Xi-2) - 8f(xi_ 1) + 8f(xi+i) - f(Xi+2)] 

and the first form of the operator indicates the origin of the name finite differ- 
ence operator. This finite difference operator has the simpler form (defined at 
any point x E R) 

N k 

(1.4) VVf(x)= w f (x + kh), 
k=-N 

which is independent of the point x where it is evaluated. This is the only kind 
of finite difference operators we shall consider in this paper. 

By using wavelet interpolation to discretize continuous functions (see [20]), 
and by using the connection coefficients determined by the wavelet system to 
obtain a discrete approximation, one obtains a wavelet discrete differentiation 
operator of the form 

2g-2 

(1.5) Dj(f)(xf )= 2j Fkf(xo + kh). 
k=-2g+2 

Here, h = 2-J is the mesh size for some fixed scaling J of the wavelet system, 
and 

iFk - JP'(x)P (x - k) dx 

are connection coefficients as defined in ?3 below, where (0(x) is the scaling 
function of the given wavelet system. 

The main point of this paper is that there is a strong relation between the 
classical finite difference operators and the induced discrete wavelet differenti- 
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ation operators using connection coefficients. As an example, for Daubechies 
wavelets of genus 2 (four coefficients), the corresponding operator DJ (given 
in ?5) coincides precisely with the classical operator V4 given in (1.3) above, 
where h = 2-J (as was observed independently by Beylkin [1]). More gener- 
ally, we will see that the wavelet differentiation operator D for a given wavelet 
system with L vanishing moments of the wavelet function, i.e., 

(1.6) jx'1I(x)dx=0, i=0,...,L, 

has the property that D commutes with differentiation up to degree 2L + 2. We 
recall that the Daubechies wavelets are characterized by having g - 1 moments 
vanishing for wavelet systems defined by 2g coefficients (these are wavelet sys- 
tems of rank 2 and genus g as in [ 10]). These wavelet systems have the property 
that they represent polynomials up to degree g - 1 exactly, but the wavelet dif- 
ferentiation operator for these wavelets commutes with differentiation of poly- 
nomials up to degree 2g, slightly more than twice the degree one might expect 
from the exact representation. 

In ?2 we find a characterization of finite difference operators which approxi- 
mate the first derivative to a certain order in terms of the action on polynomials 
up to the same degree. This will be used to show that the wavelet discrete dif- 
ferentiation has certain approximation properties. In ?3 we give a description 
of the wavelet systems, wavelet interpolation, and wavelet differentiation. In ?4 
we prove a fundamental result about the vanishing of discrete moments for the 
connection coefficients. From this we derive the polynomial mapping property 
of wavelet differentiation. In ?6 we find a comparison of the classical Stirling 
series of finite difference operators and the induced wavelet discrete differenti- 
ation operators. 

In an earlier paper, similar results to the approximation properties of wavelet 
operators described in this paper were found by Gopinath, Lawton, and Burrus 
[9]. The connection coefficients used in our paper (and for which there are 
algorithms for their computation in [ 1, 1 1 ]) are sets of specific rational numbers 
which provide concrete realizations of the wavelet-Galerkin discretization and 
approximations of linear operators described in [9]. The authors of [9] express 
their results in terms of convolution operators and approximations of linear 
translation invariant operators. They have analogues of the vanishing moments 
results that we have here, but the proofs and the formulation in the two papers 
are independent. We formulated our results in the language applicable to the 
papers in partial differential equations at the beginning of this introduction, 
where the connection coefficients play a key computational role in the numerical 
solutions. It is clear that the results of the present paper will have generalization 
to higher-order derivatives, etc., but we do not carry out that program at this 
time. 

2. FINITE DIFFERENCE APPROXIMATIONS TO DIFFERENTIATION 

Let 3: Ck (R) -> C(A) be a discretization operator mapping functions on R 
to A of the form: 3(f)(xi) = cf(xi), for f e Ck(R) and for some constant c 
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(a multiple of the restriction of f from R to A). Now consider the diagram 

Ck(R) D Ck-(R) 

(2.7) lbl 

C(A) C(A) 

for any finite difference operator of the form (1.2) and where D = d denotes 
the differentiation operator. We will say that V commutes with D up to degree 
d if the restricted diagram 

d 

Pd(R) PdlI(R) 

(2.8) 

C(A) V C(A) 

commutes, where Pd (R) is the vector space of polynomials of degree < d . The 
"diagram (2.8) commutes" means that 

3 o D = V o (, 

i.e., the linear mappings in the diagram are compatible. This is clearly a strong 
restriction on a finite difference operator for large d. We can now formulate 
the following classical result. 

Theorem 2.1. A finite difference operator V of the form (1.4) commutes with 
D up to degree d if and only if 

(2.9) f'(xi) - Vf (xi) = O(hd), 

for f e Cd+l(R). 

The proof is well known and follows from the Peano representation of the 
functional D - V (see, e.g., [6]). 

The operator V4 given in (1.3) satisfies the estimate (2.9) for h = 4 , and 
hence V4 commutes with differentiation up to degree 4. This is a special case of 
a general class of symmetric finite difference operators V2n studied by Stirling 
in the 18th century (see [15, 3]), where V2n estimates f to order 0 (h2n) as 
in equation (2.9). These points are discussed in further detail in ?6. We shall 
say that a finite difference operator V is an approximate derivative of order d 
if V satisfies (2.9). 

By virtue of Theorem 2.1, to verify that a finite difference operator is an 
approximate derivative of order d, it suffices to show that it commutes with 
differentiation of polynomials up to degree d, and we will use this later in this 
paper. 

3. WAVELET INTERPOLATION 

In this section we review some fundamental facts concerning wavelet systems. 
See [2] and [5] for more details on the general theory of wavelets. Let {ak}, k = 
0, ... , 2g - 1, g > 1, be a vector which satisfies the quadratic and linear 
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conditions 

(3.10) Zakak+21=230,l, Eak =2. 

Let (0 and qi be compactly supported L2 functions which satisfy the scaling 
equation 

2g-1 

(3.11) (o(x)= Zako(2x- k) 
k=O 

and the wavelet equation 

2g-1 

(3.12) qi(x)= Zbk(o(2x-k), 
k=O 

respectively, where the coefficients ak satisfy (3.10) above, and where bk = 
(-1)ka2g-l-k. The support of p and qi is the compact interval [O, 2g - 

1], and these will generate (by translations and dilations) a wavelet system for 
representing functions in L2 (R) by means of a series like the orthonormal series 
above. 

More specifically we define the wavelet system associated with the scaling 
coefficients ak by 

(Pk(X) := (pX - k), Vjk(X) := 2j/2 q(2x - k), j >O, 

and the wavelet expansion 

f(x) = Zfk k (x) + E fjk Wjk (x) 
k jk 

fk = Jf(X)(Pk(x)dx, fjk = Jf(x) ljk(x)dx. 

This is the wavelet series expansion with expansion (wavelet) coefficients fk and 
fjk . The vector (ao, ... , a2g-1) is called the scaling vector ("vector of scaling 
coefficients for the scaling difference equation"), and the vector ( bo, *... , b2g- 1) 

is called the wavelet vector. The parameter g is called the genus of the wavelet 
vector, and the number 2 is called the multiplier or rank of the wavelet sys- 
tem (there are wavelet systems of higher rank; see, e.g., [10, 8]). Examples of 
wavelet vectors are given in [5] as well as many other places. The Daubechies 
wavelets are characterized by having maximal vanishing moments of the wavelet 
function, i.e., 

Jx 1V(x)dx=O, 1=0, ..., g - l, 

which determines (p and iV up to a finite set of choices of the ak, and we 
call the Daubechies wavelets of genus g the specific choice having maximal 
vanishing moments given in her paper [4]. 

Assume that a scaling vector ak is given so that the associated wavelet system 
is an orthonormal basis for L2(R) (almost all scaling vectors have this property 
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and, in particular, the Daubechies wavelets have this property, see [13]). Define 

(0jk (X) = 2"2 (o(2ix - k) 

the rescaling and translates of the scaling function. Let, for j e Z, 

Vj := closure(span{jik: k e Z}). 

Then L2(R) = Uj Vj, that is, for any function f E L2(R), if we let Pj denote 
the orthogonal projection L2(R) -- Vi, then Pjf converges to f in the L2 
norm. The coefficients of Pjf are given by the classical orthonormal expansion 
type formulas (of the type discussed earlier) 

P4f(x) = S kPjk(X), 

kEZ 

where 

JkJ= jf(X) Pik(x) dx, 

since the (Pjk's are an orthonormal basis for Vj . We will denote the expansion 
coefficients of the scaled and translated scaling functions generically by f*? * and 
of the scaled and translated wavelet functions by f*' letting the superscripts 
{O} and {1 } distinguish between the two cases. 

If we let Wj denote the orthogonal complement of Vj in Vj+jI, then, for a 
fixed J E Z+ (where Z+ denotes the nonnegative integers), 

Vo e Wo e W1 G WJ-1 = VJ. 

Moreover, each of the spaces Wj is spanned by the L2 wavelet functions 1/jk, 

for i fixed, and for k e Z. 
If we let 

f(X) =EJ Ok(X)+ k fjk k (X)X 
kEZ jEZ+ kEZ 

for f E L2(R), then we find that 

J-1 

(3.13) S r 
Jk(Jk(X) = Sfok pOk(X) + Ejlk rk (X. 

kEZ kEZ j=O kEZ 

The left-hand side represents expansion information at a fixed scale, while the 
right-hand side has the same information represented in terms of a sequence of 
scales (the multiscale representation). In both cases the expansion coefficients 
are given formally by the usual orthonormal expansion coefficient formulas 

f=jf f(X)(Pik(x) dx, j E Z+, 

fA = jf(x){jk(x) dx, j E Z+. 

Moreover, it follows from the 2-scale difference equation (3.11) that one can 
determine the coefficients on the right-hand side in terms of the coefficients 
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on the left-hand side, and conversely. This is the Mallat algorithm, and the 
formulas are easy to derive ([14], see also [19]). We will not need them explicitly 
in this paper. 

Moreover, we want to remark that if we consider any expansion of the form 
(the scaling function expansion at a fixed scale or level) 

fJ(x) S JYkfk(X), 
kEZ 

where the coefficients f5?k are prescribed in some fashion (perhaps relating to 
some given L2 function f or not), then there is a corresponding expansion of 
the form (the wavelet or multiscale expansion) 

J-1 

fj(x) = IkPOk(X) + S S: fkIk( t~~~J (X kfOk ( )+EEfjk V jk (X), 
kEZ j=O kEZ 

and the coefficients in the wavelet expansion are determined in terms of the 
coefficients in scaling function expansion and the converse is true. This is the 
Mallat algorithm in general. It does not have anything to do with the coefficients 
being generalized Fourier coefficients of some given function. 

Let f be a smooth L2 function, represent f as a wavelet series 

f(x) = Efk k (X) + E 5fk vIjk (X), 

and differentiate, 

f'(X) = Efk k(X) + f fjk yjk(X). 

Expand the derivatives of the scaling and wavelet functions in a wavelet series 
(assuming that the derivatives are computed either classically or as distribu- 
tions): 

k(X) = 
Ex F,(p+ 

+ rl vil 
I i l 

ljk (X) = S Fjk pl + ZF/k@'il- 

The F-, F I-l, etc., are called connection coefficients, and have been explicitly 
calculated [1, 11] for specific families of wavelets including the Daubechies 
wavelets which have a maximal moment-vanishing property. The formulas are 
formally given by 

(3.14) F' =J f'(x - k)f (x - l)dx, k=JO '(x - k) l(x)dx, 

with the F$k and FIk being given by similar formulas. We see that the for- 
mulas for the connection coefficients are given as integrals. If one had to ap- 
proximate these integrals numerically in order use the connection coefficients, 
then one would have accuracy problems in general. As it turns out (and is 
shown in [1, 11]), the values of the connection coefficients can be calculated as 
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the solution of specific linear equations, and in fact the values turn out to be 
rational numbers in general. Programs have been written which generate these 
connection coefficients efficiently in various cases, and for a given computation 
the connection coefficients can be stored for use in a given problem. For the 
Daubechies wavelet systems for genus 2 (four-coefficient Daubechies wavelets) 
these numbers can be calculated, and one obtains for instance, 

(3.15) - (A,-_ ,, '-A ) l= 1=-2, -1, 0, 1, 2. 

Other examples of connection coefficients are computed in reference tables in 
[1, 11]. 

Let us consider the projection of a given function f E L2(R) into Vj for 
some fixed scale J (fixed resolution). There are two natural projections: 

* L2 Orthogonal Projection: 

= fJPkk(X), 

jk = Jf(x)(PJk(x)dx. 

* Interpolation Projection: 

f F- 'iJf , 

Ijf E fjk(k(X), 

fiik ft k2) 

In Ijf the evaluation could be at some other point centered near the 
support of the wavelet. 

Since f (pJk(x)dx = 2 - and supp (Jk = [2k, 2 , it follows that 

2-? f (k ) Jf(x)PJk (x)dx, 

where we note that 2 42 (Jk is an approximation to the Dirac delta function near 
the point k 

Thus, for large J, both Pjf and Ijf are good approximations to each other 
and to f (see [19] for an error analysis of these projections). 

In practice, for a digitized signal, we identify for a fixed high-resolution scale 
J the scaling expansion coefficients at that scale ( fJk) with the values of the dig- 
itized function values, and then use the Mallat algorithm to obtain the wavelet 
expansion coefficients for coarser resolution scales ( j < J). There is no inte- 
gration in the evaluation of the wavelet expansion coefficients. 
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If we consider a discrete function (or digitized continuous function), which 
we consider as an approximation of a given function, then we can use the 
connection coefficients to calculate derivatives. We will describe this explicitly 
in ?5 below, but first we want to derive some important properties of connection 
coefficients as defined above. 

4. MOMENT PROPERTIES OF CONNECTION COEFFICIENTS 

We now consider connection coefficents Fl and Fil for a given wavelet 
system. Note that knowing these connection coefficients with subscript 0 de- 
termines the full set of connection coefficients Fl and Fil by translation, and 
we will concentrate on these specific connection coefficients in our results in this 
section. 

We now have the following fundamental theorem concerning these coeffi- 
cients. 

Theorem 4.1. If f xi ,(x) dx = 0 for j =,... , L, then 

(a) l laFl = 0 for 0 < a < 2L + 2, a 54 1, I1F=1, 
(b) Ej, karFk =ofor O<ca<L. 

The proof will occupy the remainder of this section and will involve several 
lemmas. 

Lemma 4.2. If Zkka1 7t k = 0 for O < a < n, then ZIkakTr = 0 for 0 < 
ae < n. 
Proof. We have the following relationship of the connection coefficients, which 
is easily derived from the definition (3.14) and from the wavelet equation (3.12): 

2g-1 

(4.16) FO = V amFjk m 
m=O 

which implies 

2g-1 

(4.17) ZkaFjk = a/ Z 2 

k m=O k 

Since we have assumed a base case, induction proves the formula for all j. 
Thus, we obtain that Zk kaFjck = 0 for each j, which implies that E, k kEjFk k 
=0. 0 

Now consider the expansion of qg'(x) (using distribution derivative if nec- 
essary, depending on the smoothness of the wavelet system): 

(X)= E %1 P(XZ) + E rjk(X) 
I jk 

We now have L vanishing moments, so for j = 0, ..., L we have 

Jx} Y'(x) =Z loJ xJ p (x)dx + E ZF J xi fjk (x)dx 
/ jk 
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and 

JxJYI'(x)dx = -Jixk I(x)dx = 0. 

Thus, 

o - ZrOO J(x+l)?Jp(x)dx, 

o - ZF'0Z (i) Jxilh-i(x)dx = ZrOZi Q) /'1Momi((o). 
1 1=0 1 i=0 

If j = 0, then we obtain 

0= (ZF'o)Momo(5 

which imples that >j1 Flo = 0, and if i = 1, we see that 

0= (z Ir%) MomO (o + ( rl%) Mom, ?, 

which implies that 

irl o = o. 

Thus, continuing by induction, we find that 

O=ZEljFo for j=O,... , L. 
I 

But 

ZE'Ijl0 - Zj (-Foo) = Z -jr'-I =0, 
l l l 

which implies that El 1iJ l = 0 as required. Thus the hypothesis for Lemma 
4.2 is proven, and hence we conclude that part (b) is valid for all L. 

To prove part (a), we proceed by induction on L. We start with the case 
where L = 0. Since Fl = -F-' (as is easy to verify, see (4.24) below), 

(4.18) Zla%=0 

for all even a. In this case (L = 0) we need only consider 0 < a < 2, a : 1 
and this means a is either 0 or 2 which are even, and hence part (a) is verified 
for L = 0. So now we assume (a) is valid for 0 < a < 2L, a :$ 1, and we shall 
use the fact that (b) has already been shown to be true for 0 < a < L. 

We will need the following lemma relating moments of (0 and iV to the 
connection coefficients. 
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Lemma 4.3. Let p be an arbritrary positive integer. Then 

-p MomP_ ((P) = E (i) 0 iOMm_( 
(4.19) i=O 1 

+ 2-j(p+2) i (P) i kTO Momp_ig). 
i=O jk 

Proof. Write, for any positive integer p, 

(4.20) xP = E Ck (Pk (X) + E djk Vjk (X), 
k jk 

where Ck and djk are the wavelet expansion coefficients. We can calculate the 
coefficients and obtain 

Ck= JxP(Pk(x) dx = JxPp(x - k) dx = J(u + k)P(u) du 

(4.21) - X E ( O)kiuP-i((u)du = f (Pi)kiMomp i((). 
i=O i=O 

By exactly the same type of calculation, and using the definition of V'jk(X) in 
terms of q/a(x), we obtain 

(4.22) djk= 2 2 E (i)kkMompi(i). 
i=O 

Now by differentiating (4.20) and multiplying by (0(x) and integrating, we 
obtain 

(4.23) 

p JxP xp(x) dx = Ck J k(x) p (x) dx + E dik J k(x) p (x) dx, 
k 1k 

and we see that (integrating by parts) 

(4.24) rk J(k(x)((x) dx = -Jk 9(x) dx 
_)d 

k 

and that 

(4.25) 1jk= = JIk(X) (X)dx = - Jljk(X) (p0(X) dx - Vijk0 

By substituting the expressions in (4.24) and (4.25) into (4.23) and rearranging 
we obtain the desired relation (4.19). o 
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Continuing the proof of the inductive step for part (a), we let p = 2L + 1 
and use (4.19) to obtain 

-(2L+ 1)MOm2L(o)= E1 (L+ 1)ZrlMom2L+ i- 
) 

(4.26) ~~~i=O 
1 

(4.26) 
~~~~2L+1I2+Iij 

(4.26) +2-(2L+1+i) Ei (2 + 1) (ZkiF}0k) Mom2L_i+l (i ). 
zj2+I (2L 

Now, Mom,a(Vq) = 0 for 0 < a < L by the hypothesis of the theorem, so 
2L - i + 1 must be greater than L for any possibly nonzero term in the first 
sum of the right-hand term of (4.26), which implies that for such terms i < L. 
But if i < L, then Zjk kiFo = 0 by part (b). Thus, the right-hand term in 
(4.26) vanishes, and we are left with the identity 

(4.27) - (2L + 1) Mom2L(P) = L 2L+ + 1) / ir Mom2 (o) (4.27) iz(2L (?MM2l1Fi(Pj 
i=O k 

Now by the induction hypothesis for part (a) we have 

Z iF% =0 forO < i < 2L, i$ 1. 

Moreover, we see from (4.27) for the case where L = 0 (using (4.18)) that 

(4.28) Ir = -1, 
I 

which is one of the required assertions for part (a). In addition, we know from 
the normalization condition for the wavelet system, E ak= 2, that Momo(() = 
1. Substituting these facts into (4.27), we find that 

Zi2L+lIr = ? 

As we remarked above, El /afl= 0 for all even a, so Z1 12L+2pO = 0, and 
hence the induction and the theorem is proven, where (4.27) evaluates E Z l 
for the case where a = 1 . This concludes the proof of Theorem 4.1. 

5. WAVELET DIFFERENTATION 

In ?3 we discussed the Mallat algorithm and the wavelet interpolation of a 
given function to a specific scale. One obtains that, for a sufficiently small scale 
(large J), a function can be approximated by the scaling function expansion 
at that level, using values of the function at the lattice as coefficients for the 
wavelet expansion. That is, 

f(x) r Ijf (x) = 2- f(xn)(OJn (x), 
n 
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where (oJn(X) = (9(2Jx - n) *24 , as before, and where x, = nh for h = 2-J. 
Now the Mallat algorithm allows this sum to be expressed exactly as 

ZCnon(X) + E Cjk/lIjk(X) = Z 2? f(Xn) (Jn(X). 
n k n 

O<j<J- 1 

This relationship is exact, and the coefficients Ck and Cjk are linear combina- 
tions of the coefficients f (xn) . 

Now by using connection coefficients we may differentiate both sides: 

Cn >in (XZ () + ZWmk (/jXk (X) 
n k 

O<j< J-l 

=E Cn (E rn1 91 (X) + E rFn2 1Vmn2 (x)) n 
inn n Imn2 

Cjk k( 91(X) + E Fn2qlfmn2(x)) 

k m n2 
O<j<J-1 

and 

[E 2-f(Xn)Jnxj = Z2? f(Xn)(Jon(X). 
n n 

Now {(oJn(X)}n and {fljk(x)}j>J,k also form a basis for L2(R), so we may 
express (j[n (x) in this basis: 

((j[n (X) I -J (X)) = 22J 2J(O'(2jx - n)(o(2jx - j)dx 

= 2 J o'(u - n)(o(u - j)du = 2j - 

and 

((Ojn (X) Ijk(X)) = 2J+ +2(o'(2Jx - n)VI(2jx - k)dx 

= J2J+- J(o'(u - n)qli(2j-ju - k)dx 

- 2J('(u - n) Jpi-Jj = ]P(U )yOJ k(u)du = 2]JIn-] 

Thus, 

,2 J f (Xn ) (P Jn (X) 
n 

=E2-2 (Xn) (Z2JF i Ji(X) + E 2 JrrJ trs(X)) , r > J. 
n \Irs/ 
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Now since the basis elements { /jk}J?j are common to both sides of the 
equation and they are orthogonal to each of the other terms, their coefficients 
must be equal. So removing these terms from both sides, we obtain 

Z:2If(xn) (2JZ:F1j1(x)) 
n ( 1 

= Ecn (Z rF 1 (X) + rFn2 qVmn2 (X)) 
n I mn2 

+ E Cjk E (Zi 0k1(X + EZ7Mn2 Vlmn2(X) ) 

k I mn2 
O<j<J-1 

Thus, derivative computations which are performed within a limited number 
of scales are exactly equivalent to the computation 

Z 2f 

f(Xn) 

(2EZ 

FJi(x)) 
n I 

which is performed on the finest scale (h = 2-J). 
Now 

2? f(Xn) (2J E ZFlJl(x)) = Z2 - (J/(x) Z2 f(xn)li. n I I n 

So 

dxIjf(x)= [ f(Xn)gJn(X)] = Z 2-(Jl(X) Z f(xn)2]JF1 
dx n-~~~~~~ 

Interpreting this formula as a relationship on discrete data points, we see that 
the Fl's provide a weighting of adjacent points to compute the derivative. 

We define the wavelet discrete differentiation operator of level J by 

Djf(xl) = E 2J1jlf(xn)E 
n 

where DJ depends on the connection coefficients F - {Fl} (defined in (3.14)) 
of the wavelet system {(Ok, /ljk } and on the level J of the sampling of the 
values of f. We see that the wavelet discrete operator has coefficients which 
depend only on level-zero scaling functions multiplied by the scale factor 2J . 

Now if the coefficients come from a basis with L vanishing moments, then 
we have from Theorem 4.1 that 

Zla]FO= forO<a<2L+2, c:1, lIF =-V1. 

Consider any polynomial of degree 2L + 2 or less, 

2L+2 

p(x) = Z bnXn. 
n=O 
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We want to verify that 

DJ (p(x)) = 3(D(p(x)), 

where the discretization 3 is given by 

6(f(x)) = 2- f(Xk), k E Z, 

and where Xk = kh, h = 2-, as before. 
By linearity we need only check that 

DJ o3 (xn) = 3 o D(x') for n < 2L + 2. 

We see that 

(X )(Xk) = 2 (xk) =2- h k 

and similarly, 

3 ? D(X )() (Xk) n- 2-J n-1kn-1 

We calculate, recalling that 2J = h-I 

o ?(X6)(Xk) = 2J Z J Ah2/hnln = 2 hn- rkln 
1 / 

2J hn- rk-lin = -2hn- rlZkln 

2 

/ 

-2- J hn- Fm(m + k)n 
m 

=-2-J2 hn' Z m (E ( ) m'kn-) 

-2-4h' z (7 ) knI (z m Fk ). 

But from Theorem 4.1, we see that Zm MlFm = 0 for I # 1, and I < 2L + 2, 
and this same sum is equal to -1 for I = 1, hence we find that the sum over 
I in the above equation collapses to one term, leaving 

o 3(Xn)(Xk) = 
i n- n- 

as desired. o 

Thus, a wavelet system with L vanishing moments gives the exact derivatives 
for discrete points of a polynomial of degree 2L + 2. Therefore, by Theorem 
2.1, we obtain the following result. 
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Theorem 5.1. Let DJ be the level-J approximation to the derivative operator 
D. Thenif f ECd+l, 

Df(xk)- DJf(xk)= O(hd), where h =2J. 

6. COMPARISON OF WAVELET DIFFERENTIATION WITH CLASSICAL 

FINITE DIFFERENCE OPERATORS 

Beylkin points out in [1] that the connection coefficients considered for a 
given wavelet system can be computed as rational functions of the coordinates 
of the reduced parameter space for all compactly supported wavelet systems 
(see [18] for a discussion of this parameter space). Those reduced parameter 
space coordinates which correspond to Daubechies wavelets (maximal vanish- 
ing moments) have rational coordinates in the reduced parameter space, and 
consequently the connection coefficients for Daubechies wavelet systems con- 
sist of rational numbers. This is proved independently in [11], which gives a 
general algorithm for various families of connection coefficients. In particular, 
this latter paper considers the question of connection coefficients involving in- 
tegrals of triple products of scaling and wavelet functions and their derivatives, 
which are critical for nonlinear problems involving quadratic nonlinearities (see 
for example [17, 16]). 

The Daubechies wavelet systems of genus 1 and 2 have scaling functions 
which are not classically differentiable, hence the integral 

rk - J '(x)f (x - k) dx, 

which is the definition of the connection coefficients, does not exist as a classical 
integral. Nevertheless, the algorithms which give values as rational numbers for 
higher genus ([1, 11]) extend as formulas to these cases, and one finds that (see 
[1]): 

rk=_{- 20, 2} genus= 1 (Haar), 
k = {- 11, 2, 0_, _2 }, genus = 2 (Daubechies 4-coefficient). 

There is a classical sequence of finite difference operators due to Stirling 
which has the following form (see [3, Formula 7.5.4 in Chapter 7], and see [15] 
for a more thorough discussion of this sequence and its error analysis). The 
sequence has the leading terms 

(6.29) hfo = yufo - Y60fo + l3- 5f- 1 7f + 
630 140 

where fk = f(xk), and where 

(6.30) 3f(xk) = (xk+) - v (x ) 
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TABLE 6.1. Comparison of Daubechies connection coefficients 
with Stirling's formula for 9 points 

Daubechies connection 9-point Stirling 
coefficients, g = 3 finite difference 

-3.424657e - 4 -3.57142857143e - 3 
-1.4611872e - 2 3.80952380952e - 2 

1.452054e- 1 -2e- 1 
-7.452054e - 1 8e - 1 

0 0 
7.452054e - 1 -8e - 1 

-1.452054e- 1 2e- 1 
1.4611872e - 2 -3.80952380952e - 2 
-3.424657e - 4 -3.57142857143e - 3 

We can easily compute that 

(6.32) Udfo = -i-f (xo - h) + 2f(xo + h), 

(6.33) ,udfo - -ulfo = f(xo - 2h) - f(xo - h) 

(6.34) +2f(xo + h) - A f(xo + 2h). 3 1 

Thus we see that the Stirling finite difference formulas agree with the Daubechies 
connection coefficients for genus 1 and 2. For genus 3 however, one finds that the 
next Stirling formula, which can be compared with the Daubechies connection 
coefficients (the 9-point symmetric difference formula, which includes terms 
in (6.29) up to -_ I u7fo) does not agree with the Daubechies connection 
coefficients for genus = 3. The results are compared in Table 6.1. 

Thus we see that the connection coefficients provide a new series of finite 
difference operators which are of the symmetric difference type, which agree 
with the Stirling finite difference operators initially, but then diverge. This series 
of operators DJ, g, where the subscript g denotes the dependence on the genus 
of the Daubechies wavelet system, have the same approximation properties as 
the classical Stirling operators, i.e., if we consider the (d + 1)-point Stirling 
operator Vd+I, then one has that 

Vd+If(Xk) - Df(xk) = O(hd). 

By Theorem 5.1 we see that the Daubechies connection coeficients provide auto- 
matically in the wavelet context an approximate derivative Dj, g which satisfies 
the same estimate as the Stirling operator for the same number of points. In 
particular, the wavelet approximate derivative at a fixed scale J provides an 
approximation to the first derivative, where the approximation error is of the 
form 0(2-2gJ) and g is the genus of the wavelet system. Thus, using a wavelet 
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system to represent functions includes automatically a discrete differentiation 
with a predetermined rate of accuracy depending on the choice of the system, 
where the error above is for the special case of Daubechies wavelet systems. 
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